
36 The Delphi Magazine Issue 38

Beating the System: A Delphi
Version Reporting Component
by Dave Jewell

A few weeks ago, I happened to
come across a collection of

shareware Delphi components
including some very interesting
and innovative controls. However,
there’s often a runt in the litter and
I wasn’t especially impressed with
the version component which was
contained therein. The idea was
that of a non-visual component
with fields such as build number,
company name and so forth. You
set these properties at design-time
and, hey presto, the same informa-
tion could be accessed at runtime
for display in an About box or what-
ever. Ho-hum...

I’m afraid I found this concept
rather underwhelming. If you’re
going to implement a component
just to store a few strings and not
do much else, then you’re not
really bringing anything new to the
party. It occurred to me (but
maybe not to the author of this
anonymous control), that the
Delphi IDE already provides the
ability to embed a standard Win-
dows VERSION resource into your
executable. (Just go to Pro-
ject|Options, select the
VersionInfo tab, click the Include
Version Information In Project
checkbox, and off you go). I felt
that the best way to implement a
Version control would be to use
the Delphi IDE to set up the various
fields in the version resource and
then use the component at runtime
to provide quick and easy access
to the version resource.

I also felt that it would be nice if
the version component could dis-
play the same information at
design-time (fools step in, etc!) and
I therefore decided to write the
component in such a way that the
version information could also be
viewed from the Object Browser,
thus providing visual confirmation
to the programmer that things had
been set up as intended.

Pilgrim’s Progress...
I started building the skeleton of
this new component and things
went well, until I began using the
Windows versioning API routines
to extract information from the
VERSION resource to display it in the
Object Inspector at design-time. I
discovered that Microsoft’s rou-
tines execute so slowly that, with
the form designer window open in
the Delphi IDE and the versioning
component selected, my 300MHz
Pentium II machine was reduced to
a quivering wreck. I’m not sure
what it is in the Delphi IDE which
causes the Object Inspector to
refresh the currently displayed
property set of the selected com-
ponent, but it was happening far
too quickly for the system to cope.

In an effort to reduce the over-
head, I decided to build a TTimer
control into my versioning compo-
nent. The timer is only created
when the component is being used
at design-time: it simply lurks in
the background and refreshes the
version data once every so often
rather than every time one of the
property access routines is called.
Surprisingly, I found that, even
with this enhancement, the
versioning API was still slowing
things down more than I would
have liked.

I just couldn’t figure out why
Microsoft’s implementation of the
versioning API was so incredibly
slow. In the end, I decided to bite
the bullet and reached for my
trusty disassembler in order to
find out what was going on. It soon
became clear that the versioning
API has been written by someone
with a real sense of humour.

As you may know, the 32-bit
implementation of the versioning
calls reside in a small DLL called
VERSION.DLL. It turns out that this
is no more than a wrapper DLL. It
takes each of the 32-bit calls and

‘thunks’ down to the old VER.DLL
library which handles versioning
calls for 16-bit clients. The only API
calls which don’t immediately
thunk down to 16-bit DLL are those
routines which take a filename,
GetFileVersionInfoSize being a
good example. Since 16-bit DLLs
don’t understand long filenames, it
was necessary for Microsoft to
convert the passed filename into
the equivalent short filename
string (complete with all those
wonderful ~ characters) before
passing the call down to the 16-bit
library. Sigh...

But it gets better. The 16-bit
VER.DLL code in turn calls down to
LZEXPAND.DLL, the 16-bit data
decompression library which
Microsoft provide. Trust me, I’m
not making this up! At this point, I
began wondering if maybe the
decompression library pulls in
some multimedia code, or maybe
Internet Explorer, or... It was clear
that Microsoft were using a sledge-
hammer to crack a peanut.

In the light of all this, I decided to
put Microsoft’s versioning code
where it belongs, in the small
round filing cabinet under my
desk. I rewrote my component to
directly load the version resource
into memory, parse the data in situ
and return the information as com-
ponent properties, all without
touching VERSION.DLL or its play-
mates. Moreover, I modified my
timer routine so that it periodically
checks the file modification time of
the executable in question, and
only fetches the version resource
information if it detects the file
modification time has changed. I
reckon that this represents just
about the simplest, lowest over-
head approach to the problem.

Understanding VERSION
Now maybe you are thinking, Dave,
if you are going to access the

October 1998 The Delphi Magazine 37

version resource directly, then
isn’t your code going to break
if/when Microsoft ever change the
format of the resource? Well,
there’s a measure of truth in that,
but it’s not really a big issue. For
starters, the only version resource
that we’re interested in is the one
built into our own executable!
Consequently, when this compo-
nent is deployed, any subsequent
changes that Microsoft make
aren’t going to affect us. Indeed,
one could argue that by removing
the need for VERSION.DLL, we’re
actually in a safer position than we
would be otherwise! Having just
come through the Delphi 4
ItemIndex debacle, you’ll under-
stand just what I mean. Secondly,
there’s a measure of extensibility
built right into the version
resource even as it stands. As you
may know, if you right-click on the
Key/Value grid of the IDE’s
VersionInfo Project|Options
dialog, the IDE will give you the
option of adding a new custom key
to the resource. The code pre-
sented here will cope with these
new custom keys (it just comes out
in the wash) and with this inherent
extensibility, I don’t really expect
Microsoft to change the version
resource format any time soon.

OK, so how is the resource
organised? Once you tell the IDE
that you want a version resource
and then rebuild your application,
the resource will immediately be
compiled into your executable. If
you look at Figure 1, you can see
the Merlin Resource Explorer
examining a version resource
block. This program takes a rela-
tively high view of life and doesn’t
show us the nuts and bolts view of
the file that we need.

Fortunately, all the necessary
information is provided by the
Microsoft SDK. If you look up the
string VS_VERSION_INFO in the
WIN32.HLP file (look in your
\Delphi3\Help directory) then
you’ll see something like that
shown in Figure 2, which gives an
overview of the version resource
format. As you can see, there’s a
certain amount of preamble which
is then followed by another data
structure of type VS_FIXEDFILEINFO

(this one appears in the
WINDOWS.PAS file as
TVSFixedFileInfo, alth-
ough strangely the initial
data structure doesn’t).
Following the file header
is a list of StringFileInfo
records, each of which
comprise one or more
StringTable records,
which themselves com-
prise one or more String
records! That’s right
folks, more Microsoft
humour at work!

As it happens, this
information actually
makes things look some-
what more complex than
the real-life situation. In reality, the
size of the various initial strings is
fixed and therefore we can make
some assumptions about the byte
offsets of data within the version
info block. Moreover, the version
resource created by Delphi seems
to always be a degenerate case, in
the sense that there is only ever
one StringFileInfo record com-
prising a single StringTable record.
Again, this means that the code is
very much simpler than it would
otherwise be.

That said, I give you no warran-
ties, express or implied! As stated
earlier, my code will certainly
break when Microsoft change the
format of the version resource and
Inprise modify the IDE to generate
the newer type of resource. How-
ever, I can’t see this happening any
time soon and at least with my
code you know that you don’t need
a whole slew of other DLLs in order
for your application to run. I mean:
LZEXPAND, I ask you!

How It Works
The complete source code for my
TVersionInfo control is given in
Listing 1. Normally, Delphi pro-
grammers make use of units such
as TOOLINTF, EXPTINTF and the like
when creating add-in experts for
the Delphi IDE. Unintuitive as it
may seem, these units are also
available to the component writer
provided (and it’s a big proviso!)
that you only want to use them at
design-time. If you think about it,
this is a pretty obvious restriction.

When your component is running
at design-time within the IDE, it’s
got essentially the same runtime
environment as an IDE wizard or
add-in. By contrast, when your
application is compiled and exe-
cuting, any IDE packages are
unavailable to the application.

I put this fact to use in the con-
structor of TVersionInfo. Here, you
can see that I check to see if the
ToolServices variable is Nil. This
variable, defined in the EXPTINTF
unit, will be Nil if we’re running
standalone, so to speak, and it will
be non-zero if our component is
sitting on a form at design-time.

If you find this confusing, just
bear in mind that the code of a
Delphi component is ‘running’ just
as much at design-time as it does
when it’s compiled into an execut-
ing program. As soon as you add a
component to a form, an instance
of that component is created and it
starts executing. The conventional
way of distinguishing between the
two cases is to test the csDesigning
bit in the ComponentState property.
However, since we’re actually
going to make a call through the
ToolServices interface, we may as

➤ Figure 1: Here's a typical
version resource as seen using
the Resource Explorer utility
that comes with Merlin. This
utility presents a high-level
view of the version data.
To see what's happening
below the scenes, we need to
consult the SDK...

38 The Delphi Magazine Issue 38

well use that to test whether this is
design-time or runtime.

Having established that
ToolServices is Nil, we know that
this is the normal runtime case.
This being so, the name of the
executable file containing the ver-
sion resource must be Applica-
tion.ExeName. The code simply sets
up the private string variable that
holds the file name and then calls
the Refresh method to do the real
work of loading and parsing the
version data. In the runtime case,
we only ever call Refresh once,
here in the constructor.

But what if we’re sat on an IDE
form designer window at runtime?
In this case, ToolServices is not Nil.
Instead, we create a TTimer in the
usual way, set the Interval prop-
erty to 500 (500ms is twice per
second) and point the OnTimer
event at the TimerRefresh method.
Since we’re not going to do any-
thing in the TimerRefresh method if
the file modification date/time
hasn’t changed, a 500ms interval is
plenty fast enough for us. Even
with Delphi, you’d be hard pushed
to get your compile-debug-edit
cycle down to half a second!

The only question remaining
here is: where do we get the execut-
able file name from at design-time?
Here’s where ToolServices comes
in, we can just use the regular
GetProjectName method to obtain
the name of the project and then
replace any file extension with
.EXE. That’s right, I’m assuming
that you’re not building a DLL or an
OCX here, although it would be rel-
atively straightforward to modify

the code for these other cases.
Assuming you’ve saved your pro-
ject, the GetProjectName method
will return the pathname of the
saved project file. If you’ve just
started a new project, then you’ll
find that you get a default project
name and path. In the case of my
Delphi 3 system, an unsaved pro-
ject will result in a value of
D:\Delphi3\Project1.exe being
stored into the fExecutable-
FileName variable.

From this example, you should
be able to see that we can poten-
tially make use of any ToolServices
methods from a design-time com-
ponent. Like I said, this is a power-
ful, though non-obvious technique.
Remember, you saw it here first.J

Of course, you could argue that
the correct way of doing all this
would be to install a notifier, such
that the notifier calls the compo-
nent every time we’ve done a com-
pile. Well, fair enough, that would
be another way of doing things: the
ToolServices variable certainly
gives us access to the notifier code
at design-time. However, I’m a
great believer in the KISS (Keep It
Simple Stupid!) philosophy and it’s
certainly easier to set up and
manage a TTimer than it is to estab-
lish a custom notifier.

This brings us onto the
TimerRefresh routine, called by the
timer. Here, the code retrieves the
current file age (date and time of
last modification) and compares it
with the fFileAge variable. If they
differ, then the executable has
been rebuilt since the last time
around the loop. The Refresh
method is called and the fFileAge
variable is reset. Note carefully

what will happen if the executable
hasn’t yet been created or (for
whatever reason) has been
deleted. If the FileAge routine can’t
find the specified file, then it
returns a value of -1. This is why I
initialise fFileAge to -1 in the con-
structor. If the executable isn’t
available at any time, then the
various properties revert to an
‘unavailable’ state.

Much of the real work, of course,
is done via the Refresh method.
Here, any existing version data is
first de-allocated and the code
then checks to see if we’ve got a
valid pathname and if we can load
the version resource from the exe-
cutable. The Refresh routine then
wends it way through the usual
tedious sequence of API routines
needed to load a resource into
memory (oops, did I say that?) and
finally copies the data into our in-
memory buffer, calling the
ParseVersionData method to con-
vert the version data into a more
accessible format. Along the way,
there’s also a sanity check call to
ensure that we recognise this type
of version data.

The rubber hits the road in the
ParseVersionData method. This
routine isn’t perhaps a shining
example of the programmer’s art,
but at least it gets the job done.
Referring back to the earlier dis-
cussion on the format of the ver-
sion resource, you’ll see that I’ve
hard-coded three constants which
are absolute byte offsets into the
version data. Armed with this
information, the code skips
through the version resource, find-
ing key strings and adding them to
the fVerStrings list along with any

unit VersionInfo;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms,Dialogs, ExtCtrls, ExptIntf, ToolIntf;

type
TVersionInfo = class(TComponent)
private
fTimer: TTimer;
fFileAge: Integer;
fVersionData: PChar;
fVerStrings: TStringList;
fExecutableFileName: String;
procedure ReadOnlyStringProperty(Index: Integer;
const Value: String);

procedure ReadOnlyIntegerProperty(
Index, Value: Integer);

procedure SetVersionStrings (Value: TStringList);
function GetIndexStringProperty(Index: Integer): String;
function GetIndexIntegerProperty(
Index: Integer): Integer;

procedure TimerRefresh (Sender: TObject);

procedure Refresh;
procedure ParseVersionData;
function GetKey (const KeyName: String): String;

protected
public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;
property Key[const KeyName: String]: String read GetKey;

published
property ExecutableFileName: String index 0 read
GetIndexStringProperty write ReadOnlyStringProperty;

property CompanyName: String index 1 read
GetIndexStringProperty write ReadOnlyStringProperty;

property FileDescription: String index 2 read
GetIndexStringProperty write ReadOnlyStringProperty;

property FileVersion: String index 3 read
GetIndexStringProperty write ReadOnlyStringProperty;

property InternalName: String index 4 read
GetIndexStringProperty write ReadOnlyStringProperty;

property LegalCopyright: String index 5 read
GetIndexStringProperty write ReadOnlyStringProperty;

property LegalTrademarks: String index 6 read

➤ Listing 1 (below and facing)

October 1998 The Delphi Magazine 39

GetIndexStringProperty write ReadOnlyStringProperty;
property OriginalFilename: String index 7 read
GetIndexStringProperty write ReadOnlyStringProperty;

property ProductName: String index 8 read
GetIndexStringProperty write ReadOnlyStringProperty;

property ProductVersion: String index 9 read
GetIndexStringProperty write ReadOnlyStringProperty;

property Comments: String index 10 read
GetIndexStringProperty write ReadOnlyStringProperty;

property Keys: TStringList read fVerStrings
write SetVersionStrings;

property FileVersionHigh: Integer index $30 read
GetIndexIntegerProperty write ReadOnlyIntegerProperty;

property FileVersionLow: Integer index $34 read
GetIndexIntegerProperty write ReadOnlyIntegerProperty;

property ProductVersionHigh: Integer index $38 read
GetIndexIntegerProperty write ReadOnlyIntegerProperty;

property ProductVersionLow: Integer index $3C read
GetIndexIntegerProperty write ReadOnlyIntegerProperty;

end;
procedure Register;
implementation
constructor TVersionInfo.Create (AOwner: TComponent);
begin
Inherited Create (AOwner);
fFileAge := -1;
fVersionData := Nil;
fVerStrings := TStringList.Create;
if ToolServices = Nil then begin
// Run-time case
fExecutableFileName := Application.ExeName;
Refresh;

end else begin
// Design-time case
fTimer := TTimer.Create (Self);
fTimer.Enabled := True;
fTimer.Interval := 500;
fTimer.OnTimer := Self.TimerRefresh;
fExecutableFileName := ToolServices.GetProjectName;
if fExecutableFileName <> '' then
fExecutableFileName :=
ChangeFileExt (fExecutableFileName, '.exe');

end;
end;
destructor TVersionInfo.Destroy;
begin
if ToolServices <> Nil then fTimer.Free;
if fVersionData <> Nil then FreeMem (fVersionData);
fVerStrings.Free;
Inherited Destroy;

end;
procedure TVersionInfo.Refresh;
var
pSrc: PChar;
hMod: hModule;
Res: hRsrc;
lRes: hGlobal;

begin
// Trash the existing version data buffer
if fVersionData <> Nil then FreeMem (fVersionData);
fVersionData := Nil;
// Now get the updated stuff....
if fExecutableFileName <> '' then begin
hMod := LoadLibraryEx(PChar(fExecutableFileName), 0,
Load_Library_As_DataFile);

if hMod <> 0 then try
Res := FindResource (hMod, PChar (1), rt_Version);
if Res <> 0 then begin
lRes := LoadResource (hMod, Res);
if lRes <> 0 then begin
pSrc := LockResource (lRes);
if pSrc <> Nil then begin
// Sanity check time!
if PWideChar(pSrc+6) = 'VS_VERSION_INFO'
then begin
GetMem(fVersionData,
SizeofResource(hmod, Res));

Move(pSrc^, fVersionData^,
SizeofResource(hmod, Res));

ParseVersionData;
end;

end;
end;

end;
finally
FreeLibrary (hMod);

end;
end;

end;
procedure TVersionInfo.ReadOnlyStringProperty(
Index: Integer; const Value: String);

begin
// Read-only property

end;
procedure TVersionInfo.ReadOnlyIntegerProperty(
Index, Value: Integer);

begin
// Read-only property

end;
procedure TVersionInfo.SetVersionStrings(

Value: TStringList);
begin
// Read-only property

end;
procedure TVersionInfo.TimerRefresh (Sender: TObject);
var AgeNow: Integer;
begin
AgeNow := FileAge (fExecutableFileName);
if AgeNow <> fFileAge then begin

// Executable has been freshened, newly created or deleted
fFileAge := AgeNow;
Refresh;

end;
end;
procedure TVersionInfo.ParseVersionData;
const
//** ACHTUNG! Don't change these constants unless the
//** format of the VERSION resource is altered.
vSFIStart = $5C; // Start of StringFileInfo block
vSTStart = vSFIStart + $24; // Start of String table block
vSStart = vSTStart + $18; // Start of String table proper

var
p: PChar;
pw: PWord absolute p;
StringFileInfoLen, ThisEntryLen: Word;
Key, Val: String;
function Align32 (p: PChar): PChar;
var pp: LongInt absolute p;
begin
pp := (pp + 3) and $fffffffc;
Result := p;

end;
begin
// You can never have too many sanity checks...
if PWideChar(fVersionData + vSFIStart + 6) <>
'StringFileInfo' then
raise Exception.Create ('Unrecognised version block');

// Looks good - parse the version strings
fVerStrings.Clear;
p := fVersionData + vSTStart;
StringFileInfoLen := pw^;
// Point at first entry
p := fVersionData + vSStart;
while p < (fVersionData+vSTStart+StringFileInfoLen)
do begin
ThisEntryLen := pw^;
Key := PWideChar(p + 6);
Val := PWideChar((Align32(p+6+((Length(Key)+1)*2))));
fVerStrings.Add (Key + '=' + Val);
p := Align32 (p + ThisEntryLen);

end;
end;
function TVersionInfo.GetKey(const KeyName: String): String;
var
S: String;
Index, nPos: Integer;

begin
if fVersionData = Nil then
Result := '--not available--'

else begin
for Index := 0 to fVerStrings.Count - 1 do begin
S := fVerStrings [Index];
nPos := Pos ('=', S);
if Copy (S, 1, nPos - 1) = KeyName then begin
Result := Copy (S, nPos + 1, MaxInt);
Exit;

end;
end;
Result := '';

end;
end;
function TVersionInfo.GetIndexStringProperty(
Index: Integer): String;

const
PropName: array [1..10] of String = (
'CompanyName', 'FileDescription',
'FileVersion', 'InternalName',
'LegalCopyright', 'LegalTrademarks',
'OriginalFilename', 'ProductName',
'ProductVersion', 'Comments');

begin
case Index of
0 : Result := fExecutableFileName;
1..10 : Result := GetKey (PropName [Index]);

end;
end;
function TVersionInfo.GetIndexIntegerProperty(
Index: Integer): Integer;

begin
if fVersionData = Nil then
Result := -1

else
Result := PInteger (fVersionData + Index)^;

end;
procedure Register;
begin
RegisterComponents ('The X Factor', [TVersionInfo]);

end;
end.

40 The Delphi Magazine Issue 38

accompanying key-value informa-
tion, the two fields being separated
by a = character. Woe betide you if
you happen to use this character
as part of your version data! In a
commercial version of this code, it
might be better to use a
non-printable character as a delim-
iter or else to store the key-value
data in the Objects part of the list.
Another wrinkle in this code is
Microsoft’s odd stipulation that
certain fields need to be aligned on
32-bit boundaries. This explains
the use of the Align32 routine
within this method.

Using TVersionInfo
Once we’ve grabbed the key-value
information from the version data,
the rest is relatively plain sailing.
The component maintains a list of
ten distinct property names,
(CompanyName through to Comments in
the source code) each of which is a
‘standard’ field within the version
resource. These ten property
names are assigned index values
(you know by now that I just love
indexed properties!) and they all
map down onto the
GetIndexStringProperty routine.
Here, the index is used to obtain
the appropriate property name
from a constant array of strings,
and the appropriate call is then
made to the GetKey routine in order
to obtain the value part of the
string. You will also notice that
the GetIndexStringProperty rou-
tine is shared with the
ExecutableFileName property.

I mentioned earlier that the
version resource is inherently

extensible. You can add your own
custom keys by right-clicking the
version resource’s key-value grid
in the IDE Project Optionsdialog. In
order to make the TVersionInfo
component, I needed a way to
access custom keys in addition to
the ten pre-defined string fields
mentioned above. I chose to imple-
ment this through an array prop-
erty, Keys, which takes a key name
as the array index. Thus, assuming
that you’ve got a TVersionInfo com-
ponent called Version, you can
access a custom key like this:

DeveloperName.Caption :=

Version.Keys[‘DeveloperName’];

This code fragment assumes that
you’ve got an About box in which
you want to display version infor-
mation about your program. On
the About box form, you’ve got a
TLabel called DeveloperName which
gives the name of the proud
programmer/s. All that’s neces-
sary is for you to add a custom
key-value pair to your version
resource, and off you go.

In practice, you’ll most likely be
using my TVersionComponent to dis-
play About box information,
although there’s nothing to stop
you using it for other nefarious

purposes. As an example, you
could use a registration utility to
patch encrypted user name and
registration key information into
custom placeholder key-value
pairs within the version resource.
The program would then examine
this data at runtime to see whether
it’s a registered copy and, if so,
provide full functionality to the
end-user. The benefit of this
approach is that a registered exe-
cutable remains registered even
when copied to floppy disk or
moved to another computer: it
doesn’t depend on secret settings
in the registry. Most users will be
dissuaded from giving copies to
their friends when they see their
names appear in the Aboutbox, and
any attempt to ‘massage’ this
information would effectively
de-register the application.

Finally, you’ll notice that I’ve
also added a few FileVersion-
High/Low and ProductVersion-
High/Low properties to the
component, these fields simply
returning the version information
as integer values rather than
strings. This might be more conve-
nient for the developer under
certain circumstances.

Dave Jewell is a freelance consul-
tant/programmer and technical
journalist specialising in system-
level work. He is Technical Editor
of Developers Review, also pub-
lished by iTec. You can reach Dave
at Dave@HexManiac.com

➤ Figure 2:
The Microsoft
documentation
reveals that the
version resource
data can have a
somewhat
baroque format.
Fortunately,
the Delphi IDE
generates a
straightforward
variation of this
data format.

➤ Figure 3: Here's my component
strutting its stuff. All the
properties are read-only. This is
primarily a reporting component
which allows an application to
easily interrogate its own version
resource information at runtime.

	Pilgrim’s Progress...
	Understanding VERSION
	How It Works
	Using TVersionInfo

